Série N°:2

EXERCICE N°1:

V Soit x un réel strictement positif tel que : $X + \frac{1}{x} = \frac{5}{2}$.

a- Développer
$$\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$$
 puis déduire la valeur de . $\sqrt{x} + \frac{1}{\sqrt{x}}$

b- Montrer que :
$$x^2 + \frac{1}{x^2} = \frac{17}{4}$$
 puis déduire la valeur de ; $x^3 + \frac{1}{x^3}$.

II/ a, b, c et d étant quatre réels distincts.

a- Montrer que :
$$(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2$$
.

b- Ecrire le nombre : 61×113 sous la forme de somme de deux carrés.

EXERCICE N°2:

l/ Soit (O, \vec{i}, \vec{j}) un repère orthonormé du plan et soient $\vec{u} = \vec{i} + 2\vec{j}$ et $\vec{v} = -\vec{i} - 3\vec{j}$

1/ Montrer que (\vec{u}, \vec{v}) est une base.

2/ Exprimer \vec{i} et \vec{j} dans la base (\vec{u}, \vec{v}) .

3/ Soit $\vec{w} = \vec{i} - 2\vec{j}$, quelles sont les composantes du vecteur \vec{w} dans la base (\vec{u}, \vec{v}) . II/ Soit $\Re = (0, \hat{i}, \hat{j})$ un repère cartésien du plan.

1/ Placer les points : A(2,1) ; B(4,2) ; C(-2,-1) ; E(1,-3) et F(5,-1) dans \Re .

2/ Montrer que A, B et C sont alignés.

3/ Montrer que (BC) et (EF) sont parallèles.

III/ On donne un triangle ABC de centre de gravité G. Déterminer les coordonnés du point G dans chacun des repères suivants :

$$\Re_1 = (A, \overrightarrow{AB}, \overrightarrow{AC})$$
 $\Re_2 = (B, \overrightarrow{BC}, \overrightarrow{BA})$ $\Re_3 = (C, \overrightarrow{CA}, \overrightarrow{CB}).$

$$\mathfrak{R}_3 = (C, \overrightarrow{CA}, \overrightarrow{CB}).$$

EXERCICE N°3:

Soit $\Re = (O, \vec{i}, \vec{j})$ un repère orthonormé du plan et soient A(1,3); B(5,1) et $\overrightarrow{CA} = \vec{i} + 7\vec{j}$

lacktriangle Déterminer les coordonnés du point C dans le repère (O, \vec{i}, \vec{j}) .

2 a- Donner les composantes de \overrightarrow{AB} et \overrightarrow{AC} dans la base (\vec{i}, \vec{j}) .

b- Déduire que : $(\overrightarrow{AB}, \overrightarrow{AC})$ est une base.

● Déterminer dans

ℜ les coordonnées du point G centre de gravité du triangle ABC.

• Déterminer dans R les coordonnées du point D tel que ABCD soit un parallélogramme.

 Montrer que ABC est un triangle isocèle.
 Soit E(m²,m + 1), m ∈ IR. Pour quelles valeurs de m le triangle BAE est rectangle en A.

EXERCICE N°4:

Soit $\Re = (0, \vec{i}, \vec{j})$ un repère orthonormé du plan et soient les points A(2,-1) et B(1,2).

- **1** On pose : $\vec{u} = 3\overrightarrow{OA} \overrightarrow{OB}$ et $\vec{v} = -\overrightarrow{OA} + \overrightarrow{OB}$
 - a- Déterminer dans la base (\vec{i}, \vec{j}) les coordonnées des vecteurs \vec{u} et \vec{v} .
 - b- Montrer que : (\vec{u}, \vec{v}) est une base de l'ensemble des vecteurs.
- 2 a- Prouver que OAB est un triangle isocèle et rectangle.
 - b- Déterminer les coordonnées du point C tel que OACB est un carré.

EXERCICE N°5: $\vec{u} \left(\frac{\sqrt{2}}{2} \atop \frac{\sqrt{2}}{2} \right) \text{ et } \vec{v} \left(\frac{\sqrt{2}}{2} \atop \frac{\sqrt{2}}{2} \right). \text{ Montrer que : } (o, \vec{u}, \vec{v}) \text{ est un repère orthonormé du plan.}$

II/ Soit $\Re = (0, \vec{i}, \vec{j})$ et Soient les points A(2,4); B(5,1/2) et M(x,0).

- a- Trouver x pour que : $\overrightarrow{AB} \perp \overrightarrow{BM}$.
- b- Trouver x pour que : $\overrightarrow{AM} \perp \overrightarrow{BM}$

III/ Soit $\Re = (O, \vec{i}, \vec{j})$ et Soient les points A(2,3) ; B(5,0) ; C(2,-3) et D(-1,0).

- a- Montrer que : (AC) \perp (BD).
- b- Montrer que ABCD est un losange.

EXERCICE N°6:

Soit $\Re = (O, \vec{i}, \vec{j})$ un repère orthonormé du plan et soient A(2,3) ; B(-2,1) et C(3,-2).

- Montrer que les points A, B et C ne sont pas alignés.
- 2 Déterminer les coordonnées du point D tel que ABCD soit un parallélogramme.
- Soit E un point de coordonnées (x, y) et soit le vecteur : $\vec{u} = \overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC}$
 - a- Exprimer le vecteur ü en fonction des nombres x et y.
 - b- Déterminer les coordonnées du point G centre de gravité du triangle ABC.
- **④** Soit F(a, a-3)
 - a- Déterminer a pour que le triangle ACF soit rectangle en A.
 - b- Calculer l'aire du triangle ACF pour la valeur de a trouvée.
- **9** On prend $\underline{a} = 7$, déterminer les coordonnées du point F dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$